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THE MORSE INDEX THEOREM IN THE
CASE OF TWO VARIABLE END-POINTS

JOHN BOLTON

1. Introduction

Let W be a C~ complete positive-definite Riemannian manifold, and let P,
QO be submanifolds of W. If y: [0, b] — W is a geodesic of W intersecting P
and Q orthogonally at y(0) and y(b) respectively, then y may be thought of as
a “stationary point” of the length function L acting on the space of paths from
P to Q. If 2, is the space of continuous piecewise-smooth vector fields along
7, which are orthogonal to y and have initial vector tangential to P and final
vector tangential to Q, then the Morse index form I: £, X £, — R is a sym-
metric bilinear map which is interpreted as the hessian of L. The index of [
is the dimension of a maximal subspace of {2, on which [ is negative definite,
so this is a measure of the number of essentially different directions in which
y can be deformed to obtain shorter paths from P to Q lying arbitrarily close
to 7.

If @ is a point, the Morse index theorem says that the index of I is equal
to the sum of the orders of the focal points of P along 7. (See e.g., [2, Chapter
111.)

In this paper we prove a Morse-type index theorem in the general case by
defining the notion of a (P, Q)-focal point of signed order, and then obtaining
an expression for the index of I as the sum of an initial term together with the
signed orders of the (P, Q)-focal points. This is obtained in Theorem A in § 4.

Ambrose [1] and Morse [3] also have extensions to the general case. How-
ever the author feels that the present approach has advantages for two reasons.
First, the initial term is easily computed because it depends only on the second
fundamental forms S, T of P, Q respectively with respect to y’(0), y'(b) res-
pectively. Secondly, the definition of (P, @)-focal point is very natural and
rather easier than, for instance, Ambrose’s corresponding notion of a “con-
jugate point of P and Q.

The method of proof of Theorem A follows [1] and [2] in that an index
function / is defind on [0, b] and the discontinuities of i are analysed. Unlike
[1] and [2] however the index function in our case is not necessarily nonde-
creasing. This makes it unlikely that the ad-hoc subdivisions of [0, ] used in
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this paper can be avoided by using methods similar to those employed by
Osborn in [4].

The simple nature of the initial term in Theorem A makes it interesting to
obtain upperbounds on ¢ € R* in order that there be no (P, @)-focal points on
[0, c]. This is the motivation behind Theorem B, which is stated and proved
in § 5. This theorem is similar to some of the comparison theorems proved
by Warner in [5], although the proof is rather different.

2. The index form

Notation will be as in § 1, with the additional assumptions that y is para-
meterized by arc length and prolonged so that its domain of definition is R. If
B is a C*-manifold and if b ¢ B, then B, will be the tangent space of B at b.

For each t € R, let y(?) be the tangent vector of y at y(¢), and let

W= {X ¢ W (X7 @) =0} .

For each t € R, R(¢) will be the Ricci transformation of W, into itself given
by

R(OX = R0, X)y'(®) ,

where R is the curvature tensor of W.

Let V be the vector space of parallel vector fields along y, which are ortho-
gonal to y. Then the evaluation map V — W, which sends X to X(2) is a li-
near isomorphism which will be used to identify W, with V. For ¢t > 0, £!
will be the vector space of continuous piecewise-smooth maps X: [0,7] — V
with X(0) ¢ P,,, and X(?) € Q,,, and X will be the derivative of X. Then
I': 0 x 2! — R will be given by

MXY) = [(RX = XYy + % K@) — K@), Y
+ X — TX@),Y®)) — {X(0) — $X(0),Y)>,

where the sum is over the jumps ¢; of X in ]O, t[.

I' is a symmetric bilinear map and is the Morse index form arising from the
variational problem with end conditions S at O, T at ¢ as described below.

Suppose 2 is a submanifold of W intersecting y orthogonally at y(z,), and
suppose that the second fundamental form of 2 with respect to y'(¢,) is equal
to T (so, in particular 2 ,, = Q). Consider a 1-parameter family of curves
7500 < s < ¢) from P to 2 converging to y = 7, as s — 0. Let X be the as-
sociated transverse vector field, i.e., X(¢) is tangential to the curve s — 7,(?)
at s = 0. If L(s) is the length of 7, then

.
dL | _ &L

— =0, =I"X,X) .
ds ls=o ds® |s=0 ( )
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It is in this manner that I has the interpretation of the hessian of L as men-
tioned in the introduction.

It i(9), a(?), n(?) are the index, augmented index and nullity of I*, it is well
known [1, p. 65] that a(f), n(?) and i(¢) are finite, so that a(f) = n(?) + ().

To prove Theorem A we study the way in which i(¢) changes as ¢ goes from
0 to b. In § 3 it is shown that a(?) is upper semi-continuous, and i(?) is lower
semi-continuous. Thus a(#) and i(f) are continuous (and hence locally constant)
at all points where n(¢f) = 0. The jump discontinuities of i(¢) and a(?) at a
point with n(f) = O are evaluated in Propositions 1 and 2, and the proof of
Theorem A is completed in § 4, where an expression for i{(0%) is obtained.

3. Jumps of i and 4 on ]O, b]

We use i(L), a(L), n(L) to denote the index, augmented index and nullity
of a symmetric bilinear map L. If X is a scalar or vector valued function (resp.
a vector field along 7), then X will be its derivative (resp. covariant derivative).

The following lemma is the tool used in the analysis of the discontinuities
of i(¢) and a(z).

Lemma 1. Let U be a finite-dimensional vecior space, and let SB(U) be
the vector space of real-valued symmetric bilinear maps on U. Let K : ]c, dl
— SB(U) be continuously differentiable at t,c 1c, d[, and let N be the nulil
space of K(t,). Then 3¢ > O such that vu € 10, ¢l

(1) Kt + ) > i(K(t) + i(K(1)|N X N),

() Kt — p) > K@) + i(— K@) |N X N).

Proof. (i) Equip U with a scalar product, and if Z is a subspace of U
let (Z), be the unit sphere of Z. Let C be a subspace of U of dimension i(K(t,))
on which K(?,) is negative definite, and let D be a subspace of NV of dimension
i(K(t)|N x N) on which K(t, is negative definite. Since K is continuously
differentiable at #,, 3¢, > O and an open neighborhood B of (D), in (DD C),
on which K(¢, + (X, X) <0 vX e B, vO < g <¢e. Now DDC),\B is
compact, so 3¢, > O such that K(¢, + )Y, Y) <0vY e (DD C),\B, v0 <
1< & If e = min {g, &}, it is clear that K(¢, + )(X,X) <0, ¥X e (DD O),,
v el0, el

(i) Apply () to L, where L(t, + ) = K(t, — ) for all suitably small 4.

Let ¢, ¢ 10, b]. Following standard practice we construct a finite dimensional
subspace B of 2% such that i(I”|B X B) = i(t,) and a(I**|B X B) = a(t,).

If X is a smooth vector field along y with ¥ = RX then X is called a Jacobi
field. The set # of Jacobi fields which are everywhere orthogonal to y is a
vector space. If X ¢ £ has X(0) ¢ P, and X (0) — SX(0) | P, then X is
called a P-Jacobi field. These arise as the transverse vector fields associated
with variations of y through geodesics intersecting P orthogonally (see [2, p.
222)).

A finite sequence {u;} with 0 <, < --- < u, < ¢, is strongly normal in
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[0, #,] under the following conditions :

(i) Each nontrivial P-Jacobi field has no zeros in ]0, u,].

(ii) Each nontrivial Jacobi field X with X(¢) € Q,, and X)) — TX(,)
1| Q. has no zeros in [u,, ¢[.

(iii) For i =2, -..,n — 1, each nontrivial Jacobi field has at most one
zero in [u,;_,, vy,

It follows from the Rauch comparison theorem and the extension due to
Warner [5, Cor. 4.2] that strongly normal sequences exist, and moreover
there are a finite sequence {x,} and ¢ > 0 such that {x;} is strongly normal in
[0,7] for all £ ¢ [t, — &, ¢ + €]. For all such 7 we set

= {X € 2': X is smooth with ¥ = RX except possibly at
Uy + vy Uy 3 SX(0) — X(O) iR Pr(op TX(®) — X(t) L Qr(b)} .

Theorem (For proof see [1, p. 68]). Assume n > 1. For each t € [t, — e,
ty + el, i(t) = il*| Bt x B) and a(t) = a(I*|B* x BY).
Let H=W, ® --- ®W,,_. The evaluation map ev,: B* — H given by

ev(X) = (X, - - -, X(u,))
is a linear isomorphism, so the map J: 1¢, — ¢, ¢, + e[ — SB(H) given by
JO, y) = I'(ev; (%), ev,'(¥))

is well-defined. Moreover, by the above theorem, i(¥) = i(J(r)) and n(?) =
n(J(#)). In the following lemma we do the computation necessary to apply
Lemma 1.

Lemma. J is stmooth, and the derivative J(t,)) of ] at t, is given by

J(t)(x,y) = <RX(@), Y(1)) — <X (), Y (1))

where X = ev; (%) and Y = ev;'(y).

Proof. Forhelty— e, t, + e[ and for z ¢ H, let Z, be the unique Jacobi
field along y such that Z, and ev;'(z) agree on [u,, A]. Then the function Z :
1ty — et + el X R—V given by Z(h, t) = Z,(¢) is smooth. It follows that
J is smooth and

(1) Iy = (-2 2% Y>

los Un,
PR SIS

Now

N8 30X vy (X Xy
oh ot~ oh’ ot
:< aaX > 8 oX 9Y

oh ot 8h ot ot
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_(Doox o¥y (0¥ o oY
ot oh oh’ at ot

- <iRg_(, 15> _ <‘”~‘ , RX> — 0 by symmetry of R .
oh oh

Also, (0.X/0R) (¢, u,) = 0, so from (1)

(2) f(to)(z,z)=[<— o oX > <8X aY]

AR
oh ot (f, &)

Writing C(h) = (X /0t)(h, h) and D(h) = X(h, h), we see thatif U ¢ Q,,, then
€M), Uy =<TDM), U, .

Differentiating this with respect to #, and then putting Y (4, h) = U we get

g =Gl e,

This together with (2) gives
(3) J@)(x,y) = [K9X/ah,5Y [or — TY ) — <{3X /o1, TY )
+ (RX, DI, 1) -
Now if N | Q,,, then (X, N> |(h, h) = O so that
{8X[oh + 60X [ot, Ny|(h,h) =0 .
However, (3Y /ot — T(Y))| (%, t,) is orthogonal to Q,,,, so from (3)
J)(x, y) = KRX, Y — (9X /01, 9X [5£)]| (8, 1)

and this gives the answer needed to prove the lemma.

From the definition of I, it is clear that X e 0! is in the null space #* of
I' if and only if each of the following two conditions holds.

(i) X is a P-Jacobi field.

i) X — TXO) | Q-

If dim #° # 0, then we call ¢ a (P, Q)-focal point of order n(f) = dim 7°.
Notice that if Q is a point then a (P, Q)-focal point is usually called a focal
point of P along y, while if both P and Q are points then a (P, @)-focal point
is just a conjugate point of y(0) along y.

If 1€]0,b] and X, Y ¢ #¢, then

J(D(ev (X), ev(Y)) = (RX(®, Y(®)) — <X®,Y(®) ,

and this is independent of the choice of strongly normal sequence used to de-
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fine H. Let n,(?) (resp. n_(?) be the dimension of a maximal subspace of #*
on which the symmetric bilinear map

X, Y) > (RX@®, Y®) — X®,Y®)

is positive (resp. negative) definite. If # is a (P, Q)-focal point, we call n ()
(resp. n_(2)) the positive (resp. negative) order of t. Notice that if W has po-
sitive sectional curvatures at ¢, or if Q is a point, then n,() = 0 and n_(¢) =
n(?).

We now apply Lemma 1 to the above. Statements (i) and (ii) of the follow-
ing proposition are immediate, while (iii) and (iv) use the fact that a(z) +
i(—J() = dim H.

Proposition 1. Let ¢ ¢ 10, b]. Then 3¢ > O such that wp e 10, el

(1) i+ >0 + n(,

(i) it — > i) + n,0),

(i) a(t + ) < a® — n, (0,

(v) alt — ) < a@®) — n_Q).

It follows that i and « are locally constant at any z with n(?) = 0. We call
t a nondegenerate (P, Q)-focal point if n_(9) + n, (t) = n@ > 0. Clearly, if
W has positive sectional curvatures at the (P, O)-focal point ¢, then ¢ is non-
degenerate, while if Q is a point then all (P, Q)-focal points are nondegenerate.

Proposition 2. If t is a nondegenerate (P, Q)-focal point, then the inequali-
ties of Proposition 1 are equalities, and t is an isolated (P, Q)-focal point.

Proof. Let e be as in Proposition 1 and let g € ]0, ¢[. From Proposition 1
we have

ad) — n, () > alt + ) > it + p) > i) + n_(O)
a@®) — () > at — p) > it — p) > i) + n,@ .
Since a(t) = i(t) + n(r), the hypothesis of Proposition 2 implies that all the

above inequalities are equalities. The result now follows.

4. Calculation of i(0")

If ¢ is sufficiently small and positive, then () (resp. a(f) is equal to
it 7, x #,) (esp. all*| £, X #.)) where

/2 = {XE f: X(O) GPT(O)! X(t) € Qr(b)} .

For a proof of this see [1, p. 64].
If X,Ye 7, then

(4) I'X,Y)=<X@® — TX®,Y (@) — (X(0) — $X(0), Y(0)> .
If P and Q were both hypersurfaces, each ¢, = _# and the right hand side
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of (4) would be defined on # for all e R. This would make it possible to
compute i(0*) by using Lemma 1, so we begin this section by considering
this case.

Let 2, O be hypersurfaces of W, which intersect y orthogonally at y(0), y(b)
respectively. Let §, T' be the second fundamental forms of P, O with respect
to 7/(0), 7/(b), respectively, and let i(z) (resp. . a(2)) be the index (resp. aug-
mented index) of the corresponding index form I*. We compute 7(0*) in terms
of §, T and R(0), and later use this to compute i(07) in the general case.

Lemma 3. Let N be the null space of S — T. Then 3¢ > 0 such that Yu

€10, ¢l

() i(w>iS -1+ z(L|N X N)

() () <iS —T) + aL|N x N,
where L ¢ SB(V) is given by

LX,Y) ={RX — TTX,Y) .
Proof. 1etJ: R — SB(#) be given by
JOX,Y) =X — TX®, YO — <X(0) — §X(0), Y(0)> .

As already remarked, 3¢ > 0 such that for 0 <t g, i(J(9)) = 1(5) and
a(J(D) = a().
Clearly

JOO)(X, Y) = (RX(0) — TX(0), Y(0)» + <X(0) — TX(0), Y (0 ,
and the null space N of J(0) is given by
={Xe7:8X) =T} .
We now show that . .
(@ i(JO)|N X N) =i(L|N X N),

®) alJQ)|N x N) = a(L|N x N).
Let

and
={Xe 7:X0) =0}.

Then ¥ = U@ N, gnd l: U—V given by I(X) = X(0) is a linear isomor-
phism. Let N, = ["Y(N). Then N = N, @ N,. Also J(0) is positive definite on
N,, and

JO)X,Y) = LUX), I(Y) for X,YeN, .
Further, if X e N,, Y ¢ N,, then
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JONX,Y) = —(TX(0),Y(0) + {(X(0),TY(0)>=0.

The proof of (a) and (b) is now clear, and the lemma follows from Lemma 1.
We now return to the general case in which the end manifolds P, Q are
not necessarily hypersurfaces.
For any subspace B C V, py: V — B will be the orthogonal projection onto
B, and B+ will be ker pp. Let U = P, N Q,,, and write S — T as an ab-
breviation for the map

proSIU~T|U): U—U

We will construct symmetric linear maps S, 7 on ¥ such that

(i) PrryeS|Po=>Sand pgy T |0 =T,

(ii) index (resp. null space) of § — 7 = index (resp. null space) of S —

(iii) 7' |U depends only on S and T.

P, O will then be chosen to have S, T as second fundamental forms with
respect to 1'(0), y’(b) respectively.

It is clear that (i) implies that 7(z) > i(¢) and &(z) > a(z) for all ¢ > 0. We
later show that for sufficiently small positive #, 7(f) < i(). This will yield the
desired expression for i{(0*) which, by Lemma 3, depends only on S, T and
R(0).

Construction of S and 7. Let C (resp. D) be the orthogonal complementa-
ry subspace of P, (resp. Q..,) in P, + OQ,4,- Then

Po+Qu=U0U8CBD,

and C @ D is orthogonal to U.
Define S,, 7,: V — V by the requirements that
(a) ImT,cDandIm S, C C,
(b) PG@DO(SOPP,(D, — TopQru») =T, —3S,.
Let §¥, T¥ be the adjoints of S,, T, and let 2 ¢ R. Put
S=385 + S5+ ZpPL + Sopp, o
T—T +T1 ‘—ZPQ— +T0pQ7(b)'

7ih
It is clear that § and 7' are symmetric and that (i) and (iii) are satisfied.
Also, if N is the null space of S — T, then yX e N
S —TX = —TH)X + (SF —THX + SX — TX
= —PeepSX — TX) + SX — TX + (Sf — THX
= ppSX — ppTX + (S — THX
=0, since XeNCU.

It is a consequence of (i) that i(S — T) > i(S — T), so the following lemma,
together with a countup of dimensions, shows that (ii) is also true.
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Lemma . Let S — T be positive definite on G C U. Then, for suitably
large 2, S8 — T is positive definite on G @ UL. (We henceforth assume that
ST are defined using such a 1.)

Proof. Recall that (B), denotes the unit sphere of a normed vector space
B. If Z € (G),, then by (1)

(S —TX,X> =S —DX,X>>0.

T~hus ’Ehere is an open neighborhood D of (G), in (G @ UL), such that
S -DX,X>0,vXeD. Y ec(GP UL, thenthere are Y, ¢ G, Y, e C,
Y,eD, Y, e (P, + Q) suchthat Y =Y, + Y, + Y, + Y,. Thus

<('§ - T)Y, Y) =AY, Y,y + Y, Y, + Y, Yo+ K@),

where K is a continuous function on (G @ UY),. If H = (G @ UL),\D, then
H is compact so we may choose ¢, # ¢ R* such that

e = ;ng (Y, Y + <Y, Y + Y, YD} >0,
€

p = sup KM} .

Choose 1 > p/e. Then
B -DX,Xy>0, vXec(COUY,

and the lemma is established.

So far, i, n, n,, n_ have been integer-valued functions defined on the posi-
tive real numbers. We now extend their domains of definition to the nonne-
gative reals as follows.

Let i(0) = i(S — T) and n(0) = n(S — T). Let n,(0) (resp. n_(0)) be the
dimension of a maximal subspace of N on which p, o (R — TT'|N) is positive
(resp. negative) definite, where N is the null space of § — T. If n(0) # O,
then we say that O is a (P, Q)-focal point of order n(0), while 0 is a nonde-
generate (P, @)-focal point if n_(0) + #.(0) = n(0) > 0. Notice that these de-
finitions are independent of the choice of 2 used in the definition of S and 7.
Also, if W has positive sectional curvatures at 7(0), then n.(0) = 0 and n_(0)
= n(0), while if P,,, N Q,,, = {0}, then i(0) = n(0) = 0.

Proposition 3. If n(0) = 0 or if 0 is a nondegenerate (P, Q)-focal point,
then 3 > O such that there are no (P, Q)-focal points on 10, el and vy € 10, el,
l'(y) = i(O) + n_(O).

Proof. Lete > 0 be as in Lemma 3. Then that lemma, together with pro-
perty (ii) of § and T, shows that vu ¢ 10, e[

{0) + n_(0) > () > i(w) > i(0) + n_(0) .
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Thus the above inequalities are equalities, so there are no (#, Q)-focal points
on 10,¢[. We already know that a(y) < d(p), so it remains to show that for
sufficiently small positive g, i(z) > #0) + n_(0).

Let V', V, be subspaces of P,,, Q,q, respectively, such that V, 1 V, = {0}
and V, @V, =Py, + Q,4,- Define L: U— V as follows. For each X ¢ U,
there are unique elements », € V', v, ¢ V, such that

SX+TX=v,—mw.
Set

LX =2, + SX =2, — T.X .

It follows from the Rauch comparison theorem for submanifolds [5, p, 351]
that 3¢, > O such that for all 4 ¢ ]—e¢;, &,[\{0} and all X ¢ U there are unique
Jacobi fields X, &, along y such that

(a) X, is a P-Jacobi field with X,(34) = X + $hLX,

©®) Zah) € Qs W) — TELR) | O Ea(3h) = X + JALX.

Now define J: ]—¢;, &1 — SB(U) by

JW(X,Y) = <{X,Gh) — &.Gh), Y,Gh)> forh =0,
JO)X,Y) = (S — DX, Y .

Notice that for A e]0,¢[, JW(X,Y) =1"(%,,D,) where X,][0,3h] =
X,|[0,%A], X,|[%h, 1] = &, |[3h, h], and similarly for §,. In the following
lemma we do the calculation necessary for applying Lemma 1.

Lemma. J is smooth, and

JOX,Y) =R —THX,Y>,

for X, Y in the null space N of S — T.
Proof of Lemma. Let m be the dimension of P, and d the dimension of
V. The following ranges of indices will be used:

1£A5Ba"'a Sda 1£i7ja"'a gma m+1£0{’,8,"'5 Sd

We shall also employ the summation convention whereby repeated indices are
summed over their respective ranges.

Let X,Y e U, and pick an orthonormal basis e,, - - -, e; for V such that
X = xe, for some x e R, and {e, ---,e,} spans P,,. Let u, and v, be the
Jacobi fields with 1,(0) = e;, %;(0) = Se,, and v,(0) = 0, 7,(0) = e,. Since
v,(0) = 0, the vector fields w, given by

w, () = v/t for t # 0, w,(0) = 1,(0) = e,

are smooth, and {i,(2), - - -, U (D), Wi 11(D), - - -, we()} are linearly independent
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for t € J—e¢, ef. Thus we can uniquely define smooth functions a,: J—e, ¢
— R by the requirement that

a;(Wu;(kh) + a,(Ww . (3h) = X + $hLX .

Clearly a,(0) = 0, so the functions b,: ] —e;, ¢,/ — R given by

b (h) = a,h)/h for A = 0, b,(0) = 4,(0)
are smooth. Also
(5)  a®u;(Zh) + 2b,(Wv,Gh) = X + $hLX , for hel—e,el .
However, by definition of ¢, we have that vi € ] —e, 2,[1{0}, v e R,
(6) X0 = a(Wu,(®) + 2b,(R)v,(2) .
So, if we define X (1) = a,(0)u;(t) + 2b.(0)v (1), then X(h, ) = X,(?) is a
smooth vector-valued function of two variables.

Differentiating (5) with respect to # at # = O we have

(7)  aOu(0) + 3a,0),(0) + 2b,(0)v,(0) + b, (0)0,(0) = $LX .

Putting 2 = O in (5) we get that

(8) a,(0) = x, a;,(0) =0 fori=2,-.-,m,
so from (7)
(9) d,(0)e; + +8X + b, (0)e, = ILX .

Thus, if K(x) = {(6X/60)(t, 30, Y (¢, 31)>, then K is smooth, and from (6)

K(0) = <a/0):(0) + $a:(0)ii(0) + b,0)7,00) + 2b,(0)0,(0), Y
+ <a,0)2:0) + 2b,(0)2,(0), ILY

which becomes, in consequence of (8) and (9),

10 K@) = IKLX — SX, .S~'Y>~+ (RX,Y> + (SX,LY))
+ (b (0)e,, LY — SY> .
However, b,(0)e, is orthogonal to P4, so
(b (0e,, LY = (b (e, S,Y> = (b (0)e,, SY> .
Thus from (10)

(11) K@©0) = +LX — 8§X,8Y> + (RX,Y> 4+ (8X,LY)) .



578 JOHN BOLTON

Using similar techniques it can be shown that if
H(h) = & .Gh), 7,Gh)y  forh+0,
HO) = TX,Y>,
then H is smooth and
(12) HO) = }LX + TX,TY> — (RX,Y> + (TX,LY>) .
Since J(W)(X,Y) = K(h) — H(h) we see that J is smooth and
JOX,Y) = RX,Y> + 38X — TX,LY> + <LX — §X,8Y>
—LX + TX,TY) .
Thus, if X, Y ¢ N then
JO)X,Y) = (RX,Y> —TX,TY),

as was required to prove the lemma.
Returning to the proof of Proposition 3, we see that the above lemma, to-
gether with Lemma 1, shows that 3e, > 0 such that vz € 10, &l

iJ(w) = iJ©0) + n_(0) .

However, as already remarked, J(1)(X, Y) = I(%,, 9,), so that i(J(x) < i().
Thus

i0) + n(0) < iJ(w) < i(p) < a(p) < @) < i0) + n.(0),

and the proof of the proposition is complete.
Propositions 1, 2 and 3 are combined to give the main result of the paper:
Theorem A. Let P, Q be submanifolds of W, and let y be a geodesic of
W intersecting P and Q orthogonally at y(0) and y(b) respectively. If P, Q
have only nondegenerate (P, Q)-focal points on [0, b], then these (P, Q)-focal
points are finite in number. Further, the index i(b) and the augmented index
a(b) of the index form of this configuration are given by

ib)y=iS—1) + Kz::@ n_() — 0§<b n.(5,
ab)y =S — 1) + 0§<b n_(f) + O;Kb n. (@,

where S, T are the second fundamental forms of P, Q with respect to v/(0),
7'(b), respectively.
5. A comparison theorem

In view of Theorem A it is desirable to obtain an estimate of the distance
from P to the first (P, O)-focal point. If § — T is positive definite (e.g., if
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P.o, N Q,4, = {0}), then methods similar to those employed by Warner [5,
Proof of Theorem 3.2] may be used to yield such information. However, these
methods depend on I* being positive definite for small #, and as we have seen,
this is not the case for general S, T.

In this section we illustrate a method of finding such estimates using the
idea of translates of S as employed by Ambrose in [1]. The principal drawback
in our use of this construction is that we must assume that P is a hypersurface
of W.

Let ¢, be the first focal point of P along y, and let ¢ ¢ [0, #,[. For each X ¢ V,
there is a unique P-Jacobi field 2 such that () = X. Let S,(X) = Z(2).
This defines a map S,: V' — V which may be shown to be an element of the
space SL(V) of symmetric linear maps from V to V (See [1, p. 54]). Notice
that if P is not a hypersurface, then the above breaks down at 1 = 0.

Lemma 4. The map §S: [0, t,[ — SL(V) given by 5(t) = S, is smooth and
satisfies the Riccati equation

S = R@) — 80 .

Proof. The smoothness of § follows from the theory of solutions of ordi-
nary differential equations. Let 2" be a P-Jacobi field. Then (S2)(¥) = # (),
so by differentiating we get

SO + SHW) = F@ ,

which gives

SO = R — S .

Hence the lemma is proved.

If L eSL(V), let L* e SL(Q,,) be given by LX) = p, ,LX.

Theorem B. Assume that P is a hypersurface of W and that

(i) each eigenvalue of S has modulus < A,

(ii) each eigenvalue of S* — T has modulus > 2 > 0,

(ili) for each positive t, each eigenvalue of R(¥) has modulus < 6.
Then the first (P, Q)-focal point occurs at or after t,, where t, is the smallest
positive solution of the equation

cot Ot = QOO + A + A2) if6 >0,
t=Q024 4+ D ife=0.

Proof. For 6 > 0, let r, be the smallest positive solution of
cot @Vt = Ag~*

and let 7, = A~ It follows from the Rauch comparison theorem for submani-
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folds [5, Corollary 4.2(a)] that the first focal point of P occurs at or after z,
and this occurs after ¢,. Thus § is defined on [0, #,]. Let

D={@,0eR(>0) X R(=0):t<7z,},
and define g: D — R by
g(8,t) = 62 cot (6% + K) , where K = cot™! (—A467¥%) .

Then g is continuous and negative on D, and dg/dt = —6 — g~
Lemma. [f X, Y are unit vectors in V and if t < t,, then

(d/d)<S. X, Y) < [(3g/0@, D] .

Proof of Lemma. Let | || be the norm on V associated with { , >, and for
LeSL(V) let

IL| = sup {|LZ|: Ze V and | Z|| = 1} .

Then
|%<Szx, Y>| — [ROX — SSX, YO <6 + S -

To establish the lemma it is enough to show that ||S,| < |g(@, 1] for § >
8, t < z,. Since ||S,|| < |g(6, 0)| it suffices to show that if § > O, ¢, ¢ [0, 7,l,
Z ¢ V are such that | Z]| =1, 0 <||S,,|| =18, )|, then (d/dD) ||S,Z| <|3g/at]|
at (4, t,). However, this is clear because in this case

s2) = ROZ - 552525217 att=t

<O+ (|8 < |ag/ar| at (6,1, .

Returning to the proof of Theorem B, we note that if ¢, ¢ [0, [ is a (P, Q)-
focal point, then 31X ¢ Q,,, such that [|X|| =1 and ${,X = TX. However,
from the lemma it is clear that if Y ¢ Q,,,, then

SeX — SuX, Y < 18(0,0) — g0, 1) < |g(0,0) — g(6,8)| = 2 .

Since S, = S, we now have a contradiction of hypothesis (ii). This completes
the proof of Theorem B.
Similar theorems may be proved using the above methods.
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